Intracellular Na(+) and metabolic modulation of Na/K pump and excitability in the rat suprachiasmatic nucleus neurons.

نویسندگان

  • Yi-Chi Wang
  • Jyh-Jeen Yang
  • Rong-Chi Huang
چکیده

Na/K pump activity and metabolic rate are both higher during the day in the suprachiasmatic nucleus (SCN) that houses the circadian clock. Here we investigated the role of intracellular Na(+) and energy metabolism in regulating Na/K pump activity and neuronal excitability. Removal of extracellular K(+) to block the Na/K pump excited SCN neurons to fire at higher rates and return to normal K(+) to reactivate the pump produced rebound hyperpolarization to inhibit firing. In the presence of tetrodotoxin to block the action potentials, both zero K(+)-induced depolarization and rebound hyperpolarization were blocked by the cardiac glycoside strophanthidin. Ratiometric Na(+) imaging with a Na(+)-sensitive fluorescent dye indicated saturating accumulation of intracellular Na(+) in response to pump blockade with zero K(+). The Na(+) ionophore monensin also induced Na(+) loading and hyperpolarized the membrane potential, with the hyperpolarizing effect of monensin abolished in zero Na(+) or by pump blockade. Conversely, Na(+) depletion with Na(+)-free pipette solution depolarized membrane potential but retained residual Na/K pump activity. Cyanide inhibition of oxidative phosphorylation blocked the Na/K pump to depolarize resting potential and increase spontaneous firing in most cells, and to raise intracellular Na(+) levels in all cells. Nonetheless, the Na/K pump was incompletely blocked by cyanide but completely blocked by iodoacetate to inhibit glycolysis, indicating the involvement of both oxidative phosphorylation and glycolysis in fueling the Na/K pump. Together, the results indicate the importance of intracellular Na(+) and energy metabolism in regulating Na/K pump activity as well as neuronal excitability in the SCN neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 2 3 Intracellular Na + and Metabolic Modulation of Na / K Pump and Excitability in the Rat 4 Suprachiasmatic Nucleus Neurons

40 41 Na/K pump activity and metabolic rate are both higher at day in the suprachiasmatic nucleus 42 (SCN) that houses the circadian clock. Here we investigated the role of intracellular Na and 43 energy metabolism in regulating Na/K pump activity and neuronal excitability. Removal of 44 extracellular K to block the Na/K pump excited SCN neurons to fire at higher rates and return 45 to normal K...

متن کامل

Diurnal modulation of the Na+/K+-ATPase and spontaneous firing in the rat retinorecipient clock neurons.

The ventral "core" suprachiasmatic nucleus (vSCN) neurons are the retinorecipient neurons in the mammalian circadian clock and maintain a diurnal firing rhythm in reduced preparations. We tested the possibility that daily changes in Na+/K+-ATPase accompany diurnal variation in spontaneous electrical activity. In control, bath application of 9 microM strophanthidin increased the spontaneous firi...

متن کامل

Riluzole-sensitive slowly inactivating sodium current in rat suprachiasmatic nucleus neurons.

The persistent (i.e., slowly inactivating) fraction of the Na current (I(Na,P)) regulates excitability of CNS neurons. In isolated rat suprachiasmatic nucleus (SCN) neurons with a ramp-type voltage-clamp protocol, we have studied the properties of a robust current that has the general properties of I(Na,P) but exhibits a slow inactivation (I(Na,S)). The time dependence of the development of the...

متن کامل

Role of Na⁺/Ca²⁺ exchanger in Ca²⁺ homeostasis in rat suprachiasmatic nucleus neurons.

Intracellular Ca(2+) is critical to the central clock of the suprachiasmatic nucleus (SCN). However, the role of Na(+)/Ca(2+) exchanger (NCX) in intracellular Ca(2+) concentration ([Ca(2+)]i) homeostasis in the SCN is unknown. Here we show that NCX is an important mechanism for somatic Ca(2+) clearance in SCN neurons. In control conditions Na(+)-free solution lowered [Ca(2+)]i by inhibiting TTX...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 108 7  شماره 

صفحات  -

تاریخ انتشار 2012